کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10324192 661413 2005 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A possibilistic approach to latent component analysis for symmetric fuzzy data
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A possibilistic approach to latent component analysis for symmetric fuzzy data
چکیده انگلیسی
In many situations the available amount of data is huge and can be intractable. When the data set is single valued, latent component models are recognized techniques, which provide a useful compression of the information. This is done by considering a regression model between observed and unobserved (latent) variables. In this paper, an extension of latent component analysis to deal with fuzzy data is proposed. Our extension follows the possibilistic approach, widely used both in the cluster and regression frameworks. In this case, the possibilistic approach involves the formulation of a latent component analysis for fuzzy data by optimization. Specifically, a non-linear programming problem in which the fuzziness of the model is minimized is introduced. In order to show how our model works, the results of two applications are proposed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 150, Issue 2, 1 March 2005, Pages 285-305
نویسندگان
, ,