کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10324489 | 661443 | 2005 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Interactive exploration of fuzzy clusters using Neighborgrams
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We describe an interactive method to generate a set of fuzzy clusters for classes of interest of a given, labeled data set. The presented method is therefore best suited for applications where the focus of analysis lies on a model for the minority class or for small to medium-sized data sets. The clustering algorithm creates one-dimensional models of the neighborhood for a set of patterns by constructing cluster candidates for each pattern of interest and then chooses the best subset of clusters that form a global model of the data. The accompanying visualization of these neighborhoods allows the user to interact with the clustering process by selecting, discarding, or fine-tuning potential cluster candidates. Clusters can be crisp or fuzzy and the latter leads to a substantial improvement of the classification accuracy. We demonstrate the performance of the underlying algorithm on several data sets from the StatLog project and show its usefulness for visual cluster exploration on the Iris data and a large molecular dataset from the National Cancer Institute.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 149, Issue 1, 1 January 2005, Pages 21-37
Journal: Fuzzy Sets and Systems - Volume 149, Issue 1, 1 January 2005, Pages 21-37
نویسندگان
Michael R. Berthold, Bernd Wiswedel, David E. Patterson,