کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1032624 1483684 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stock index forecasting based on a hybrid model
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری استراتژی و مدیریت استراتژیک
پیش نمایش صفحه اول مقاله
Stock index forecasting based on a hybrid model
چکیده انگلیسی

Forecasting the stock market price index is a challenging task. The exponential smoothing model (ESM), autoregressive integrated moving average model (ARIMA), and the back propagation neural network (BPNN) can be used to make forecasts based on time series. In this paper, a hybrid approach combining ESM, ARIMA, and BPNN is proposed to be the most advantageous of all three models. The weight of the proposed hybrid model (PHM) is determined by genetic algorithm (GA). The closing of the Shenzhen Integrated Index (SZII) and opening of the Dow Jones Industrial Average Index (DJIAI) are used as illustrative examples to evaluate the performances of the PHM. Numerical results show that the proposed model outperforms all traditional models, including ESM, ARIMA, BPNN, the equal weight hybrid model (EWH), and the random walk model (RWM).


► A hybrid model combining ESM, ARIMA, and BPNN is proposed for forecasting stock indices.
► The weight of the proposed hybrid model is determined by genetic algorithm.
► The real dataset for stock indices are used as illustrative examples to show the better performances of the hybrid model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Omega - Volume 40, Issue 6, December 2012, Pages 758–766
نویسندگان
, , , ,