کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10326409 678070 2016 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Applying subclustering and Lp distance in Weighted K-Means with distributed centroids
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Applying subclustering and Lp distance in Weighted K-Means with distributed centroids
چکیده انگلیسی
We consider the Weighted K-Means algorithm with distributed centroids aimed at clustering data sets with numerical, categorical and mixed types of data. Our approach allows given features (i.e., variables) to have different weights at different clusters. Thus, it supports the intuitive idea that features may have different degrees of relevance at different clusters. We use the Minkowski metric in a way that feature weights become feature re-scaling factors for any considered exponent. Moreover, the traditional Silhouette clustering validity index was adapted to deal with both numerical and categorical types of features. Finally, we show that our new method usually outperforms traditional K-Means as well as the recently proposed WK-DC clustering algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 173, Part 3, 15 January 2016, Pages 700-707
نویسندگان
, ,