کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10328109 | 681570 | 2010 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variable selection via combined penalization for high-dimensional data analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We propose a new penalized least squares approach to handling high-dimensional statistical analysis problems. Our proposed procedure can outperform the SCAD penalty technique (Fan and Li, 2001) when the number of predictors p is much larger than the number of observations n, and/or when the correlation among predictors is high. The proposed procedure has some of the properties of the smoothly clipped absolute deviation (SCAD) penalty method, including sparsity and continuity, and is asymptotically equivalent to an oracle estimator. We show how the approach can be used to analyze high-dimensional data, e.g., microarray data, to construct a classification rule and at the same time automatically select significant genes. A simulation study and real data examples demonstrate the practical aspects of the new method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 10, 1 October 2010, Pages 2230-2243
Journal: Computational Statistics & Data Analysis - Volume 54, Issue 10, 1 October 2010, Pages 2230-2243
نویسندگان
Xiaoming Wang, Taesung Park, K.C. Carriere,