کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10349420 | 863094 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stabilized discontinuous Galerkin method for hyperbolic equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work a new stabilization technique is proposed and studied for the discontinuous Galerkin method applied to hyperbolic equations. In order to avoid the use of slope limiters, a streamline diffusion-like term is added to control oscillations for arbitrary element orders. Thus, the scheme combines ideas from both the Runge-Kutta discontinuous Galerkin method [J. Scient. Comput. 16 (2001) 173] and the streamline diffusion method [Comput. Methods Appl. Mech. Engrg. 32 (1982)]. To increase the stability range of the method, the diffusion term is treated implicitly. The result is a scheme with higher order in space with the same stability range as the finite volume method. An optimal relation between the time step and the size of the diffusion coefficient is analyzed for numerical precision. The scheme is implemented using the object oriented programming philosophy based on the environment described in [Comput. Methods Appl. Mech. Engrg. 150 (1997)]. Accuracy and shock capturing abilities of the method are analyzed in terms of two bidimensional model problems: the rotating cone and the backward facing step problem for the Euler equations of gas dynamics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 194, Issue 17, 29 April 2005, Pages 1861-1874
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 194, Issue 17, 29 April 2005, Pages 1861-1874
نویسندگان
Jorge L.D. Calle, Philippe R.B. Devloo, Sônia M. Gomes,