کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10358776 868639 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An improved collaborative movie recommendation system using computational intelligence
ترجمه فارسی عنوان
سیستم بهبود یافته همکاری با استفاده از هوش محاسباتی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant products from a massive amount of data. For media product, online collaborative movie recommendations make attempts to assist users to access their preferred movies by capturing precisely similar neighbors among users or movies from their historical common ratings. However, due to the data sparsely, neighbor selecting is getting more difficult with the fast increasing of movies and users. In this paper, a hybrid model-based movie recommendation system which utilizes the improved K-means clustering coupled with genetic algorithms (GAs) to partition transformed user space is proposed. It employs principal component analysis (PCA) data reduction technique to dense the movie population space which could reduce the computation complexity in intelligent movie recom-mendation as well. The experiment results on Movielens dataset indicate that the proposed approach can provide high performance in terms of accuracy, and generate more reliable and personalized movie recommendations when compared with the existing methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Languages & Computing - Volume 25, Issue 6, December 2014, Pages 667-675
نویسندگان
, , , ,