| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10360403 | 869792 | 2014 | 15 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Towards subject independent continuous sign language recognition: A segment and merge approach
												
											ترجمه فارسی عنوان
													به سمت مستقل زبان مستقل مستقل: یک بخش و روش ادغام 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 چشم انداز کامپیوتر و تشخیص الگو
												
											چکیده انگلیسی
												This paper presents a segment-based probabilistic approach to robustly recognize continuous sign language sentences. The recognition strategy is based on a two-layer conditional random field (CRF) model, where the lower layer processes the component channels and provides outputs to the upper layer for sign recognition. The continuously signed sentences are first segmented, and the sub-segments are labeled SIGN or ME (movement epenthesis) by a Bayesian network (BN) which fuses the outputs of independent CRF and support vector machine (SVM) classifiers. The sub-segments labeled as ME are discarded and the remaining SIGN sub-segments are merged and recognized by the two-layer CRF classifier; for this we have proposed a new algorithm based on the semi-Markov CRF decoding scheme. With eight signers, we obtained a recall rate of 95.7% and a precision of 96.6% for unseen samples from seen signers, and a recall rate of 86.6% and a precision of 89.9% for unseen signers.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 47, Issue 3, March 2014, Pages 1294-1308
											Journal: Pattern Recognition - Volume 47, Issue 3, March 2014, Pages 1294-1308
نویسندگان
												W.W. Kong, Surendra Ranganath, 
											