کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10362307 | 870693 | 2005 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning the Semantic Landscape: embedding scene knowledge in object tracking
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The accuracy of object tracking methodologies can be significantly improved by utilizing knowledge about the monitored scene. Such scene knowledge includes the homography between the camera and ground planes and the occlusion landscape identifying the depth map associated with the static occlusions in the scene. Using the ground plane, a simple method of relating the projected height and width of people objects to image location is used to constrain the dimensions of appearance models. Moreover, trajectory modeling can be greatly improved by performing tracking on the ground-plane tracking using global real-world noise models for the observation and dynamic processes. Finally, the occlusion landscape allows the tracker to predict the complete or partial occlusion of object observations. To facilitate plug and play functionality, this scene knowledge must be automatically learnt. The paper demonstrates how, over a sufficient length of time, observations from the monitored scene itself can be used to parameterize the semantic landscape.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Real-Time Imaging - Volume 11, Issue 3, June 2005, Pages 186-203
Journal: Real-Time Imaging - Volume 11, Issue 3, June 2005, Pages 186-203
نویسندگان
D. Greenhill, J. Renno, J. Orwell, G.A. Jones,