کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10368945 | 875177 | 2005 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A post nonlinear geometric algorithm for independent component analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Simple linear independent component analysis (ICA) algorithms work efficiently only in linear mixing environments. Whereas, a nonlinear ICA model, which is more complicated, would be more practical for general applications as it can work with both linear and nonlinear mixtures. In this paper, we introduce a novel method for nonlinear ICA problem. The proposed method follows the post nonlinear approach to model the mixtures, and exploits the difference between a linear mixture and a nonlinear one from their nature of distributions in a multidimensional space to develop a separation scheme. The nonlinear mixture is represented by a nonlinear surface while the linear mixture is represented by a plane. A geometric learning algorithm named as post nonlinear geometric ICA (pnGICA) is developed by geometrically transforming the nonlinear surface to a plane, i.e., to a linear mixture. Computer simulations of the algorithm provide promising performance on different data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 15, Issue 3, May 2005, Pages 276-294
Journal: Digital Signal Processing - Volume 15, Issue 3, May 2005, Pages 276-294
نویسندگان
Thang Viet Nguyen, Jagdish Chandra Patra, Amitabha Das,