کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10385908 882687 2005 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regression Models Using Pattern Search Assisted Least Square Support Vector Machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
پیش نمایش صفحه اول مقاله
Regression Models Using Pattern Search Assisted Least Square Support Vector Machines
چکیده انگلیسی
Least Square Support Vector Machines (LS-SVM), a new machine-learning tool has been employed for developing data driven models of non-linear processes. The method is firmly rooted in the statistical learning theory and transforms the input data to a higher dimensional feature space where the use of appropriate kernel functions avoid computational difficulty. Further, a pattern search algorithm, which explores multiple directions and utilizes coordinate search with fixed step size, is employed for selecting optimal LS-SVM model that produces a minimum possible prediction error. To show the efficacy and efficiency of the fully automated pattern search assisted LS-SVM methodology, we have tested it on several benchmark examples. The study suggests that proposed paradigm can be a useful and viable tool in building data driven models of non-linear processes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Research and Design - Volume 83, Issue 8, August 2005, Pages 1030-1037
نویسندگان
, , , ,