کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10397659 | 889678 | 2005 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient implementation of constrained min-max model predictive control with bounded uncertainties: a vertex rejection approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
تکنولوژی و شیمی فرآیندی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Min-Max Model Predictive Control (MMMPC) is one of the strategies used to control plants subject to bounded additive uncertainties. The implementation of MMMPC suffers a large computational burden due to the NP-hard optimization problem that has to be solved at every sampling time. This paper shows how to overcome this by transforming the original problem into a reduced min-max problem in which the number of extreme uncertainty realizations to be considered is significantly lowered. Thus, the solution is much simpler. In this way, the range of processes to which MMMPC can be applied is considerably broadened. A simulation example is given in the paper.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 15, Issue 2, March 2005, Pages 149-158
Journal: Journal of Process Control - Volume 15, Issue 2, March 2005, Pages 149-158
نویسندگان
T. Alamo, D.R. RamıÌrez, E.F. Camacho,