کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10401623 | 891366 | 2005 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fault diagnosis of power transformer based on multi-layer SVM classifier
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Support vector machine (SVM) is a novel machine learning method based on statistical learning theory (SLT). SVM is powerful for the problem with small sampling, nonlinear and high dimension. A multi-layer SVM classifier is applied to fault diagnosis of power transformer for the first time in this paper. Content of five diagnostic gases dissolved in oil obtained by dissolved gas analysis (DGA) is preprocessed through a special data processing, and six features are extracted for SVMs. Then the multi-layer SVM classifier is trained with the training samples which are extracted by the above data processing. Finally, the four fault types of transformer are identified by the trained classifier. The test results show that the classifier has an excellent performance on training speed and reliability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electric Power Systems Research - Volume 75, Issue 1, July 2005, Pages 9-15
Journal: Electric Power Systems Research - Volume 75, Issue 1, July 2005, Pages 9-15
نویسندگان
Ganyun Lv, Haozhong Cheng, Haibao Zhai, Lixin Dong,