کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10414082 | 896069 | 2014 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A pendulum with an elliptic-type parametric excitation: Stability charts for a damped and undamped system
ترجمه فارسی عنوان
آونگ با تحریک پارامتریک بیضوی نوع: نمودار ثبات برای یک سیستم خنثی و کم عمق
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
چکیده انگلیسی
In this paper, a pendulum parametrically excited by the excitation which has the form of the Jacobi cn elliptic function is considered. Three cases related to the value of the elliptic parameter are distinguished: the case when it is smaller than zero, when it ranges between zero and unity, and when it is higher than unity. First, interpretations of the excitation with such elliptic parameter are given in terms of its period, higher harmonic content and the amplitude. These interpretations enable one to consider the elliptic-type excitation as a type of multi-cosine excitation whose frequency and amplitude are related mutually in a particular way. Stability charts are determined for damped and undamped systems. When the elliptic parameter is equal to zero, the governing equations considered transform to the well-known Mathieu equation. In all other cases, the governing equations considered can be seen as a new generalisation of the Mathieu equation. The influence of an arbitrary real elliptic parameter on the location and shape of the transition curves and instability tongues is investigated, illustrated and discussed in all three cases, which represent new and so far unknown results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 19, Issue 4, April 2014, Pages 1185-1202
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 19, Issue 4, April 2014, Pages 1185-1202
نویسندگان
Ivana Kovacic, Miodrag Zukovic,