کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
757816 1462603 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Practical stability with respect to initial time difference for Caputo fractional differential equations
ترجمه فارسی عنوان
ثبات عملی با توجه به اختلاف زمان اولیه برای معادلات دیفرانسیل کسری کاپوتو
کلمات کلیدی
ثبات عملی؛ داده های اولیه مختلف. توابع لیاپانوف. معادلات دیفرانسیل کسری کاپوتو ؛ مشتق دینی کسری کاپوتو
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی

Practical stability with initial time difference for fractional differential equations is studied by a new derivative of Lyapunov functions.

Practical stability with initial data difference for nonlinear Caputo fractional differential equations is studied. This type of stability generalizes known concepts of stability in the literature. It enables us to compare the behavior of two solutions when both initial values and initial intervals are different. In this paper the concept of practical stability with initial time difference is generalized to Caputo fractional differential equations. A definition of the derivative of Lyapunov like function along the given nonlinear Caputo fractional differential equation is given. Comparison results using this definition and scalar fractional differential equations are proved. Sufficient conditions for several types of practical stability with initial time difference for nonlinear Caputo fractional differential equations are obtained via Lyapunov functions. Some examples are given to illustrate the results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 42, January 2017, Pages 106–120
نویسندگان
, , , ,