کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10414278 | 896427 | 2014 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Comment on “A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family”, P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896]
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله
![عکس صفحه اول مقاله: Comment on “A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family”, P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896] Comment on “A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family”, P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896]](/preview/png/10414278.png)
چکیده انگلیسی
In the commented paper the authors study some aspects of boundedness in the general Lorenz family, xÌ=Ï(y-x),yÌ=Ïx-γy-xz,zÌ=-βz+xy, considering that it contains four independent parameters. However, as we show here by means of a linear scaling in time and coordinates, they are dealing with a system homothetically equivalent to the Lorenz system. Consequently, the novel and interesting results they provide for the general Lorenz family can be obtained working directly with the Lorenz equations, that is, dealing only with three independent parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 19, Issue 3, March 2014, Pages 758-761
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 19, Issue 3, March 2014, Pages 758-761
نویسندگان
Antonio Algaba, Fernando Fernández-Sánchez, Manuel Merino, Alejandro J. RodrÃguez-Luis,