کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10419575 | 904221 | 2005 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Accurate estimation of surface roughness from texture features of the surface image using an adaptive neuro-fuzzy inference system
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Accurate estimation of surface roughness of workpieces in turning operations play an important role in the manufacturing industry. This paper proposes a method using an adaptive neuro-fuzzy inference system (ANFIS) to establish the relationship between actual surface roughness and texture features of the surface image. The accurate modeling of surface roughness can effectively estimate surface roughness. The input parameters of a training model are spatial frequency, arithmetic mean value, and standard deviation of gray levels from the surface image, without involving cutting parameters (cutting speed, feed rate, and depth of cut). Experiments demonstrate the validity and effectiveness of fuzzy neural networks for modeling and estimating surface roughness. Experimental results show that the proposed ANFIS-based method outperforms the existing polynomial-network-based method in terms of training and test accuracy of surface roughness.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Precision Engineering - Volume 29, Issue 1, January 2005, Pages 95-100
Journal: Precision Engineering - Volume 29, Issue 1, January 2005, Pages 95-100
نویسندگان
Kuang-Chyi Lee, Shinn-Jang Ho, Shinn-Ying Ho,