کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10432157 910237 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cell viability in intervertebral disc under various nutritional and dynamic loading conditions: 3d Finite element analysis
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
Cell viability in intervertebral disc under various nutritional and dynamic loading conditions: 3d Finite element analysis
چکیده انگلیسی
In this study, a new cell density model was developed and incorporated into the formulation of the mechano-electrochemical mixture theory to investigate the effects of deprivation of nutrition supply at boundary source, degeneration, and dynamic loading on the cell viability of intervertebral disc (IVD) using finite element methods. The deprivation of nutrition supply at boundary source was simulated by reduction in nutrition level at CEP and AF boundaries. Cases with 100%, 75%, 60%, 50% and 30% of normal nutrition level at both CEP and AF boundaries were modeled. Unconfined axial sinusoidal dynamic compressions with different combinations of amplitude (u=10%±2.5%, ±5%) and frequency (f=1, 10, 20 cycle/day) were applied. Degenerated IVD was modeled with altered material properties. Cell density decreased substantially with reduction of nutrition level at boundaries. Cell death was initiated primarily near the NP-AF interface on the mid-plane. Dynamic loading did not result in a change in the cell density in non-degenerated IVD, since glucose levels did not fall below the minimum value for cell survival; in degenerated IVDs, we found that increasing frequency and amplitude both resulted in higher cell density, because dynamic compression facilitates the diffusion of nutrients and thus increases the nutrition level around IVD cells. The novel computational model can be used to quantitatively predict both when and where cells start to die within the IVD under various kinds of nutritional and mechanical conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 45, Issue 16, 15 November 2012, Pages 2769-2777
نویسندگان
, , ,