کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10473 686 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fibrinogen-based precision microporous scaffold for tissue engineering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
A fibrinogen-based precision microporous scaffold for tissue engineering
چکیده انگلیسی

Fibrin has been long used as an effective scaffolding material to grow a variety of cells and tissue constructs. It has been utilized mainly as a hydrogel in varying concentrations to provide an environment in which suspended cells work to rearrange the fibers and lay down their own extracellular matrix. For these fibrin hydrogels to be useful in many tissue-engineering applications, the gels must be cultured for long periods of time in order to increase their mechanical strength to the levels of native tissues. High concentrations of fibrinogen increase the mechanical strength of fibrin hydrogels, but at the same time reduce the ability of cells within the scaffold to spread and survive. We present a method to create a microporous, nanofibriliar fibrin scaffold that has controllable pore size, porosity, and microstructure for applications in tissue engineering. Fibrin has numerous advantages as a scaffolding material as it is normally used by the body as temporary scaffolding for tissue regeneration and healing, and can be autologously sourced. We present here a scaffolding process which enhances the mechanical properties of the fibrin hydrogel by forming it surrounding poly(methyl-methacrylate) beads, then removing the beads with acetone to form an interconnected microporous network. The acetone serves the dual purpose of precipitating and fixing the fibrinogen-based scaffolds as well as adding strength to the network during polymer bead removal. Effects of fibrinogen concentration and time in acetone were examined as well as polymerization with thrombin. A natural crosslinker, genipin, was also used to add strength to the scaffolds, producing a Young's modulus of up to 184±5 kPa after 36 h of reaction. Using these methods we were able to produce microporous fibrin scaffolds that support cell growth and have mechanical properties similar to many native tissues.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 28, Issue 35, December 2007, Pages 5298–5306
نویسندگان
, , ,