کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
10524908 957845 2013 11 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Normality testing for a long-memory sequence using the empirical moment generating function
ترجمه فارسی عنوان
تست نرمال برای توالی طولانی حافظه با استفاده از تابع تولید لحظه ای تجربی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی
Moment generating functions and more generally, integral transforms for goodness-of-fit tests have been in use in the last several decades. Given a set of observations, the empirical transforms are easy to compute, being simply a sample mean, and due to uniqueness properties, these functions can be used for goodness-of-fit tests. This paper focuses on time series observations from a stationary process for which the moment generating function exists and the correlations have long-memory. For long-memory processes, the infinite sum of the correlations diverges and the realizations tend to have spurious trend like patterns where there may be none. Our aim is to use the empirical moment generating function to test the null hypothesis that the marginal distribution is Gaussian. We provide a simple proof of a central limit theorem using ideas from Gaussian subordination models (Taqqu, 1975) and derive critical regions for a graphical test of normality, namely the T3-plot (Ghosh, 1996). Some simulated and real data examples are used for illustration.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 143, Issue 5, May 2013, Pages 944-954
نویسندگان
,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت