کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10625743 | 989634 | 2014 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Application of artificial neural networks to predict corrosion behavior of Ni-SiC composite coatings deposited by ultrasonic electrodeposition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A feed-forward, multilayer perceptron artificial neural network (ANN) model with eight hidden layers and 12 neurons was used to predict the corrosion behavior of Ni-SiC composite coatings deposited by ultrasonic electrodeposition. The effect of process parameters, namely, ultrasonic power, SiC particle concentration, and current density, on the weight losses of Ni-SiC composite coatings was investigated. The grain sizes of Ni and SiC were determined by using X-ray diffraction (XRD) and scanning probe microscopy (SPM). Results indicate that ultrasonic power, SiC particle concentration, and current density have significant effects on the weight losses of Ni-SiC composite coatings. The ANN model, which has a mean square error of approximately 3.35%, can effectively predict the corrosion behavior of Ni-SiC composite coatings. The following optimum conditions for depositing Ni-SiC composite coatings were determined on the basis of the lowest weight loss of Ni-SiC deposits: ultrasonic power of 250Â W, SiC particle concentration of 8Â g/l, and current density of 4Â A/dm2. XRD and SPM results demonstrate that the average grain sizes of Ni and SiC in the Ni-SiC composite coating are 90 and 70Â nm, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ceramics International - Volume 40, Issue 4, May 2014, Pages 5425-5430
Journal: Ceramics International - Volume 40, Issue 4, May 2014, Pages 5425-5430
نویسندگان
Youjun Xu, Yongyong Zhu, Guorong Xiao, Chunyang Ma,