کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1064445 948480 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparison of conditional autoregressive models used in Bayesian disease mapping
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی سیاست های بهداشت و سلامت عمومی
پیش نمایش صفحه اول مقاله
A comparison of conditional autoregressive models used in Bayesian disease mapping
چکیده انگلیسی

Disease mapping is the area of epidemiology that estimates the spatial pattern in disease risk over an extended geographical region, so that areas with elevated risk levels can be identified. Bayesian hierarchical models are typically used in this context, which represent the risk surface using a combination of available covariate data and a set of spatial random effects. These random effects are included to model any overdispersion or spatial correlation in the disease data, that has not been accounted for by the available covariate information. The random effects are typically modelled by a conditional autoregressive (CAR) prior distribution, and a number of alternative specifications have been proposed. This paper critiques four of the most common models within the CAR class, and assesses their appropriateness via a simulation study. The four models are then applied to a new study mapping cancer incidence in Greater Glasgow, Scotland, between 2001 and 2005.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spatial and Spatio-temporal Epidemiology - Volume 2, Issue 2, June 2011, Pages 79–89
نویسندگان
,