کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10675813 | 1010738 | 2005 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Detection of element content in coal by pulsed neutron method based on an optimized back-propagation neural network
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
سطوح، پوششها و فیلمها
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper introduces the detection method of principal element content (carbon, hydrogen and oxygen) in coal by using pulsed fast-thermal neutron analysis method (PFTNA). A system for the measurement of coal by PFTNA is also presented. The 14Â MeV pulsed neutron generator and a Bi4Ge3O12 (BGO) detector with a 4096 Multi-Channel Analyzer (MCA) were applied in this system. The detection model of element content in coal based on back-propagation (BP) neural network which is optimized by Genetic Algorithms (GAs) was put forward, and the research of verifying the model was made by comparing the practical measured data of coal in power plant. The results show that the detection precision of carbon, hydrogen and oxygen using this model is 0.3%, 0.2% and 0.4%, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 239, Issue 3, September 2005, Pages 202-208
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 239, Issue 3, September 2005, Pages 202-208
نویسندگان
Sang Hai-feng, Wang Fu-li, Liu Lin-mao, Sang Hai-jun,