کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10884637 | 1079434 | 2011 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A multiorganism based method for Bayesian gene network estimation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
مدلسازی و شبیه سازی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The primary goal of this article is to infer genetic interactions based on gene expression data. A new method for multiorganism Bayesian gene network estimation is presented based on multitask learning. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from true correlations that would lead to actual edges when modeling the gene interactions as a Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosystems - Volume 103, Issue 3, March 2011, Pages 425-434
Journal: Biosystems - Volume 103, Issue 3, March 2011, Pages 425-434
نویسندگان
Zaher Dawy, Elias Yaacoub, Marcel Nassar, Rami Abdallah, Hady Ali Zeineddine,