کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10885746 1079902 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوتکنولوژی یا زیست‌فناوری
پیش نمایش صفحه اول مقاله
DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins
چکیده انگلیسی
Application of computational methods in drug discovery has received increased attention in recent years as a way to accelerate drug target prediction. Based on 443 sequence-derived protein features, we applied the most commonly used machine learning methods to predict whether a protein is druggable as well as to opt for superior algorithm in this task. In addition, feature selection procedures were used to provide the best performance of each classifier according to the optimum number of features. When run on all features, Neural Network was the best classifier, with 89.98% accuracy, based on a k-fold cross-validation test. Among all the algorithms applied, the optimum number of most-relevant features was 130, according to the Support Vector Machine-Feature Selection (SVM-FS) algorithm. This study resulted in the discovery of new drug target which potentially can be employed in cell signaling pathways, gene expression, and signal transduction. The DrugMiner web tool was developed based on the findings of this study to provide researchers with the ability to predict druggable proteins. DrugMiner is freely available at www.DrugMiner.org.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Drug Discovery Today - Volume 21, Issue 5, May 2016, Pages 718-724
نویسندگان
, , , , , ,