کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10958184 1099976 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Melatonin attenuates dexamethasone-induced spatial memory impairment and dexamethasone-induced reduction of synaptic protein expressions in the mouse brain
ترجمه فارسی عنوان
ملاتونین موجب کاهش اختلال حافظه فضایی ناشی از دگزامتازون و کاهش میزان بیان پروتئین سیناپسی در مغز موشهای دگزامتازون
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
چکیده انگلیسی
Chronic stress or prolonged exposure to high levels of glucocorticoid induces neuropathological alterations, such as dendritic atrophy of hippocampal or cortical neurons. The chronic administration of high doses of dexamethasone (DEX), a synthetic glucocorticoid receptor agonist, impairs long-term memory and motor coordination, reduces body weight and induces mortality in mice. DEX is typically administered clinically for a prolonged period. Therefore, we are interested in studying the mechanism by which chronic DEX administration affects cognitive function. In this study, we attempted to explore whether chronic DEX administration alters the process of memory formation and to determine the mechanism underlying the detrimental effect of DEX. The results showed that mice treated with DEX for 21 consecutive days had significantly impaired spatial memory in the Morris Water Maze task. Mice treated with DEX had prolonged water maze performance latencies and spent less time in the target quadrant compared to the control group. Furthermore, DEX reduced brain-derived neurotrophic factor (BDNF), N-methyl-d-aspartate (NMDA) receptor subunit (NR2A/B), calcium/calmodulin-dependent protein kinase II (CaMKII) in both the prefrontal cortex and hippocampus and synaptophysin in the prefrontal cortex. We also investigated whether melatonin, a hormone synthesized in the pineal gland, could protect against DEX-induced changes in spatial memory and synaptic plasticity. The results showed that mice pretreated with melatonin prior to the DEX treatment had shorter escape latencies and remained in the target quadrant longer compared to the group only treated with DEX. Melatonin significantly prevented a DEX-induced reduction in the expression of NR2A/B, BDNF, CaMKII and synaptophysin. The results from the present study demonstrate that melatonin pretreatment prevents cognitive impairment caused by DEX. However, the precise mechanism by which melatonin affects cognitive function requires further investigation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurochemistry International - Volume 63, Issue 5, November 2013, Pages 482-491
نویسندگان
, , , ,