کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10973876 | 1108020 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Comparison of modelling techniques for milk-production forecasting
ترجمه فارسی عنوان
مقایسه تکنیک های مدل سازی برای پیش بینی تولید شیر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تولید لبنیات، پیش بینی تولید شیر، مدل سازی،
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم دامی و جانورشناسی
چکیده انگلیسی
The objective of this study was to assess the suitability of 3 different modeling techniques for the prediction of total daily herd milk yield from a herd of 140 lactating pasture-based dairy cows over varying forecast horizons. A nonlinear auto-regressive model with exogenous input, a static artificial neural network, and a multiple linear regression model were developed using 3 yr of historical milk-production data. The models predicted the total daily herd milk yield over a full season using a 305-d forecast horizon and 50-, 30-, and 10-d moving piecewise horizons to test the accuracy of the models over long- and short-term periods. All 3 models predicted the daily production levels for a full lactation of 305 d with a percentage root mean square error (RMSE) of â¤12.03%. However, the nonlinear auto-regressive model with exogenous input was capable of increasing its prediction accuracy as the horizon was shortened from 305 to 50, 30, and 10 d [RMSE (%) = 8.59, 8.1, 6.77, 5.84], whereas the static artificial neural network [RMSE (%) = 12.03, 12.15, 11.74, 10.7] and the multiple linear regression model [RMSE (%) = 10.62, 10.68, 10.62, 10.54] were not able to reduce their forecast error over the same horizons to the same extent. For this particular application the nonlinear auto-regressive model with exogenous input can be presented as a more accurate alternative to conventional regression modeling techniques, especially for short-term milk-yield predictions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Dairy Science - Volume 97, Issue 6, June 2014, Pages 3352-3363
Journal: Journal of Dairy Science - Volume 97, Issue 6, June 2014, Pages 3352-3363
نویسندگان
M.D. Murphy, M.J. O'Mahony, L. Shalloo, P. French, J. Upton,