کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10975881 | 1108037 | 2013 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Effect of microfiltration concentration factor on serum protein removal from skim milk using spiral-wound polymeric membranes1
ترجمه فارسی عنوان
اثر ضریب غلظت میکروفیلتراسیون بر حذف پروتئین سرم از شیر خشک با استفاده از غشای پلیمری مارپیچی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
میکروفیلتراسیون، عامل تمرکز، پروتئین سرم غشای زخم مارپیچی،
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم دامی و جانورشناسی
چکیده انگلیسی
Our objective was to determine the effect of concentration factor (CF) on the removal of serum protein (SP) from skim milk during microfiltration (MF) at 50°C using a 0.3-μm-pore-size spiral-wound (SW) polymeric polyvinylidene fluoride (PVDF) membrane. Pasteurized (72°C for 16 s) skim milk was MF (50°C) at 3 CF (1.50, 2.25, and 3.00Ã), each on a separate day of processing starting with skim milk. Two phases of MF were used at each CF, with an initial startup-stabilization phase (40 min in full recycle mode) to achieve the desired CF, followed by a steady-state phase (90-min feed-and-bleed with recycle) where data was collected. The experiment was replicated 3 times, and SP removal from skim milk was quantified at each CF. System pressures, flow rates, CF, and fluxes were monitored during the 90-min run. Permeate flux increased (12.8, 15.3, and 19.0 kg/m2 per hour) with decreasing CF from 3.00 to 1.50Ã, whereas fouled water flux did not differ among CF, indicating that the effect of membrane fouling on hydraulic resistance of the membrane was similar at all CF. However, the CF used when microfiltering skim milk (50°C) with a 0.3-μm polymeric SW PVDF membrane did affect the percentage of SP removed. As CF increased from 1.50 to 3.00Ã, the percentage of SP removed from skim milk increased from 10.56 to 35.57%, in a single stage bleed-and-feed MF system. Percentage SP removal from skim milk was lower than the theoretical value. Rejection of SP during MF of skim milk with SW PVDF membranes was caused by fouling of the membrane, not by the membrane itself and differences in the foulant characteristic among CF influenced SP rejection more than it influenced hydraulic resistance. We hypothesize that differences in the conditions near the surface of the membrane and within the pores during the first few minutes of processing, when casein micelles pass through the membrane, influenced the rejection of SP because more pore size narrowing and plugging occurred at low CF than at high CF due to a slower rate of gel layer formation at low CF. It is possible that percentage removal of SP from skim milk at 50°C could be improved by optimization of the membrane pore size, feed solution composition and concentration, and controlling the rate of formation of the concentration polarization-derived gel layer at the surface of the membrane during the first few minutes of processing.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Dairy Science - Volume 96, Issue 10, October 2013, Pages 6199-6212
Journal: Journal of Dairy Science - Volume 96, Issue 10, October 2013, Pages 6199-6212
نویسندگان
S.L. Beckman, D.M. Barbano,