کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11002383 1440028 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized biplots for stress-based multidimensionally scaled projections
ترجمه فارسی عنوان
مقادیر متمرکز برای پیش بینی های مقیاس چندبعدی مبتنی بر استرس
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Dimension reduction and visualization are staples of data analytics. Methods such as Principal Component Analysis (PCA) and Multidimensional Scaling (MDS) provide low dimensional (LD) projections of high dimensional (HD) data while preserving an HD relationship between observations. Traditional biplots assign meaning to the LD space of a PCA projection by displaying LD axes for the attributes. These axes, however, are specific to the linear projection used in PCA. Stress-based MDS (s-MDS) projections, which allow for arbitrary stress and dissimilarity functions, require special care when labeling the LD space. An iterative scheme is developed to plot an LD axis for each attribute based on the user-specified stress and dissimilarity metrics. The resulting plot, which contains both the LD projection of observations and attributes, is referred to as the Generalized s-MDS Biplot. The details of the Generalized s-MDS Biplot methodology, its relationship with PCA-derived biplots, and an application to a real dataset are provided.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 128, December 2018, Pages 340-353
نویسندگان
, , ,