| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 11033049 | 1641092 | 2018 | 50 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Multichannel block sparse Bayesian learning reflectivity inversion with lp-norm criterion-based Q estimation
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													علوم زمین و سیارات
													فیزیک زمین (ژئو فیزیک)
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												The generation of attenuated seismic reflection data can be described via a nonstationary convolution model with quality factor Q. In according with the linear matrix-matrix multiplication operation that is deduced to depict the multichannel nonstationary seismic received signal, we present a spatially correlated reflectivity inversion approach with the Q estimation based on block sparse Bayesian learning (bSBL) and an lp-norm criterion. In contrast to pre-existingtime-variant deconvolution, the proposed technique can eliminate the wavelet-filtering and Q-filtering effect simultaneously and retrieve an optimal reflectivity matrix without providing Q value by anticipation. Through introducing the lp-norm criterion and scanning Q strategy, we could capture the optimal Q to calculate the blurring operator in the inversion function. The inverted reflectivity result will be satisfied with presupposition that multi-trace reflectivity is comparatively sparse corresponding to its minimum lp-norm when the optimal Q structure is applied to build the attenuation equation. In reflectivity inversion area, the relationship among reflection spikes in adjacent traces as a priori information is represented by a covariance matrix of reflectivity model in the bSBL framework and assists in solving procedure to promote the inversion precision. To diminish the influence of man-made parameter selection, the hyperparameters of reflectivity and noise model are estimated in virtue of expectation-maximization (EM) algorithm. The contribution of spatial correlation could guarantee a higher quality of reflectivity image. New method merges the multichannel reflectivity inversion and Q estimation into a single processing and avoids the drawback of the conventional Q extraction technique. Synthetic and field data sets prove the practicality of the developed technique and indicate the favorable anti-noise capability.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Applied Geophysics - Volume 159, December 2018, Pages 434-445
											Journal: Journal of Applied Geophysics - Volume 159, December 2018, Pages 434-445
نویسندگان
												Ming Ma, Shangxu Wang, Sanyi Yuan, Jianhu Gao, Shengjun Li,