کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1133769 1489085 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust data envelopment analysis approaches for evaluating algorithmic performance
ترجمه فارسی عنوان
رویکرد تجزیه و تحلیل اطلاعات پایدار برای ارزیابی عملکرد الگوریتمی
کلمات کلیدی
متا اورویری، مدل سازی عدم اطمینان، تحلیل پوششی داده ها، بهینه سازی همپوشانی مقاوم
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
چکیده انگلیسی


• DEA is adopted to measure the relative efficiency of optimization algorithms.
• Consider not only average but also variation of algorithm’s output values.
• Robust DEA models are developed based on robust counterpart optimization approaches.
• Apply the models to evaluate GA operators for solving the vehicle routing problem.

Recent advances in state-of-the-art meta-heuristics feature the incorporation of probabilistic operators aiming to diversify search directions or to escape from being trapped in local optima. This feature would result in non-deterministic output in solutions that vary from one run to another of a meta-heuristic. Consequently, both the average and variation of outputs over multiple runs have to be considered in evaluating performances of different configurations of a meta-heuristic or distinct meta-heuristics. To this end, this work considers each algorithm as a decision-making unit (DMU) and develops robust data envelopment analysis (DEA) models taking into account not only average but also standard deviation of an algorithm’s output for evaluating relative efficiencies of a set of algorithms. The robust DEA models describe uncertain output using an uncertainty set, and aim to maximize a DMU’s worst-case relative efficiency with respect to that uncertainty set. The proposed models are employed to evaluate a set of distinct configurations of a genetic algorithm and a set of parameter settings of a simulated annealing heuristic. Evaluation results demonstrate that the robust DEA models are able to identify efficient algorithmic configurations. The proposed models contribute not only to the evaluation of meta-heuristics but also to the DEA methodology.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Industrial Engineering - Volume 81, March 2015, Pages 78–89
نویسندگان
,