کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145219 1489654 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sharp minimax tests for large Toeplitz covariance matrices with repeated observations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Sharp minimax tests for large Toeplitz covariance matrices with repeated observations
چکیده انگلیسی

We observe a sample of nn independent pp-dimensional Gaussian vectors with Toeplitz covariance matrix Σ=[σ∣i−j∣]1≤i,j≤pΣ=[σ∣i−j∣]1≤i,j≤p and σ0=1σ0=1. We consider the problem of testing the hypothesis that ΣΣ is the identity matrix asymptotically when n→∞n→∞ and p→∞p→∞. We suppose that the covariances σkσk decrease either polynomially (∑k≥1k2ασk2≤L for α>1/4α>1/4 and L>0L>0) or exponentially (∑k≥1e2Akσk2≤L for A,L>0A,L>0).We consider a test procedure based on a weighted U-statistic of order 2, with optimal weights chosen as solution of an extremal problem. We give the asymptotic normality of the test statistic under the null hypothesis for fixed nn and p→+∞p→+∞ and the asymptotic behavior of the type I error probability of our test procedure. We also show that the maximal type II error probability, either tend to 00, or is bounded from above. In the latter case, the upper bound is given using the asymptotic normality of our test statistic under alternatives close to the separation boundary. Our assumptions imply mild conditions: n=o(p2α−1/2)n=o(p2α−1/2) (in the polynomial case), n=o(ep)n=o(ep) (in the exponential case).We prove both rate optimality and sharp optimality of our results, for α>1α>1 in the polynomial case and for any A>0A>0 in the exponential case.A simulation study illustrates the good behavior of our procedure, in particular for small nn, large pp.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 146, April 2016, Pages 164–176
نویسندگان
, ,