کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145229 1489654 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate functional linear regression and prediction
ترجمه فارسی عنوان
رگرسیون خطی عملکرد چند متغیره و پیش بینی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی

We propose a multivariate functional linear regression (mFLR) approach to analysis and prediction of multivariate functional data in cases in which both the response and predictor variables contain multivariate random functions. The mFLR model, coupled with the multivariate functional principal component analysis approach, takes the advantage of cross-correlation between component functions within the multivariate response and predictor variables, respectively. The estimate of the matrix of bivariate regression functions is consistent in the sense of the multi-dimensional Gram–Schmidt norm and is asymptotically normally distributed. The prediction intervals of the multivariate random trajectories are available for predictive inference. We show the finite sample performance of mFLR by a simulation study and illustrate the method through predicting multivariate traffic flow trajectories for up-to-date and partially observed traffic streams.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 146, April 2016, Pages 301–312
نویسندگان
, , ,