کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145428 1489660 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic properties of the misclassification rates for Euclidean Distance Discriminant rule in high-dimensional data
ترجمه فارسی عنوان
خواص همبستگی مقادیر اشتباه برای قانون اقلیدسی فاصله کشف در داده های با ابعاد بزرگ
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی

Performance accuracy of the Euclidean Distance Discriminant rule (EDDR) is studied in the high-dimensional asymptotic framework which allows the dimensionality to exceed sample size. Under mild assumptions on the traces of the covariance matrix, our new results provide the asymptotic distribution of the conditional misclassification rate and the explicit expression for the consistent and asymptotically unbiased estimator of the expected misclassification rate. To get these properties, new results on the asymptotic normality of the quadratic forms and traces of the higher power of Wishart matrix, are established. Using our asymptotic results, we further develop two generic methods of determining a cut-off point for EDDR to adjust the misclassification rates. Finally, we numerically justify the high accuracy of our asymptotic findings along with the cut-off determination methods in finite sample applications, inclusive of the large sample and high-dimensional scenarios.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 140, September 2015, Pages 234–244
نویسندگان
, , , ,