کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145558 1489672 2014 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimax adaptive dimension reduction for regression
ترجمه فارسی عنوان
کاهش ضریب انطباق مینیمکس برای رگرسیون
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی

In this paper, we address the problem of regression estimation in the context of a pp-dimensional predictor when pp is large. We propose a general model in which the regression function is a composite function. Our model consists in a nonlinear extension of the usual sufficient dimension reduction setting. The strategy followed for estimating the regression function is based on the estimation of a new parameter, called the reduced dimension. We adopt a minimax point of view and provide both lower and upper bounds for the optimal rates of convergence for the estimation of the regression function in the context of our model. We prove that our estimate adapts, in the minimax sense, to the unknown value dd of the reduced dimension and achieves therefore fast rates of convergence when d≪pd≪p.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 128, July 2014, Pages 186–202
نویسندگان
,