کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145591 1489666 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust inverse regression for dimension reduction
ترجمه فارسی عنوان
رگرسیون معکوس قوی برای کاهش ابعاد
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی

Classical sufficient dimension reduction methods are sensitive to outliers present in predictors, and may not perform well when the distribution of the predictors is heavy-tailed. In this paper, we propose two robust inverse regression methods which are insensitive to data contamination: weighted inverse regression estimation and sliced inverse median estimation. Both weighted inverse regression estimation and sliced inverse median estimation produce unbiased estimates of the central space when the predictors follow an elliptically contoured distribution. Our proposals are compared with existing robust dimension reduction procedures through comprehensive simulation studies and an application to the New Zealand mussel data. It is demonstrated that our methods have better overall performances than existing robust procedures in the presence of potential outliers and/or inliers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 134, February 2015, Pages 71–81
نویسندگان
, , ,