کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1145807 | 1489678 | 2013 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
High-dimensional AIC in the growth curve model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The AIC and its modifications have been proposed for selecting the degree in a polynomial growth curve model under a large-sample framework when the sample size n is large, but the dimension p is fixed. In this paper, first we propose a high-dimensional AIC (denoted by HAIC) which is an asymptotic unbiased estimator of the AIC-type risk function defined by the expected log-predictive likelihood or equivalently the Kullback-Leibler information, under a high-dimensional framework such that p/nâcâ[0,1). It is noted that our new criterion gives an estimator with small biases in a wide range of p and n. Next we derive asymptotic distributions of AIC and HAIC under the high-dimensional framework. Through a Monte Carlo simulation, we note that these new approximations are more accurate than the approximations based on a large-sample framework.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 122, November 2013, Pages 239-250
Journal: Journal of Multivariate Analysis - Volume 122, November 2013, Pages 239-250
نویسندگان
Yasunori Fujikoshi, Rie Enomoto, Tetsuro Sakurai,