کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1145830 | 1489680 | 2013 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The L1L1 penalized LAD estimator for high dimensional linear regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, the high-dimensional sparse linear regression model is considered, where the overall number of variables is larger than the number of observations. We investigate the L1L1 penalized least absolute deviation method. Different from most of the other methods, the L1L1 penalized LAD method does not need any knowledge of standard deviation of the noises or any moment assumptions of the noises. Our analysis shows that the method achieves near oracle performance, i.e. with large probability, the L2L2 norm of the estimation error is of order O(klogp/n). The result is true for a wide range of noise distributions, even for the Cauchy distribution. Numerical results are also presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 120, September 2013, Pages 135–151
Journal: Journal of Multivariate Analysis - Volume 120, September 2013, Pages 135–151
نویسندگان
Lie Wang,