کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1145969 1489675 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part
چکیده انگلیسی
We consider the problem of simultaneous variable selection and estimation in additive partially linear Cox's proportional hazards models with high-dimensional or ultra-high-dimensional covariates in the linear part. Under the sparse model assumption, we apply the smoothly clipped absolute deviation (SCAD) penalty to select the significant covariates in the linear part and use polynomial splines to estimate the nonparametric additive component functions. The oracle property of the estimator is demonstrated, in the sense that consistency in terms of variable selection can be achieved and that the nonzero coefficients are asymptotically normal with the same asymptotic variance as they would have if the zero coefficients were known a priori. Monte Carlo studies are presented to illustrate the behavior of the estimator using various tuning parameter selectors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 125, March 2014, Pages 50-64
نویسندگان
, , ,