کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1145969 | 1489675 | 2014 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the problem of simultaneous variable selection and estimation in additive partially linear Cox's proportional hazards models with high-dimensional or ultra-high-dimensional covariates in the linear part. Under the sparse model assumption, we apply the smoothly clipped absolute deviation (SCAD) penalty to select the significant covariates in the linear part and use polynomial splines to estimate the nonparametric additive component functions. The oracle property of the estimator is demonstrated, in the sense that consistency in terms of variable selection can be achieved and that the nonzero coefficients are asymptotically normal with the same asymptotic variance as they would have if the zero coefficients were known a priori. Monte Carlo studies are presented to illustrate the behavior of the estimator using various tuning parameter selectors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 125, March 2014, Pages 50-64
Journal: Journal of Multivariate Analysis - Volume 125, March 2014, Pages 50-64
نویسندگان
Heng Lian, Jianbo Li, Xingyu Tang,