کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146101 1489681 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Supervised component generalized linear regression using a PLS-extension of the Fisher scoring algorithm
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Supervised component generalized linear regression using a PLS-extension of the Fisher scoring algorithm
چکیده انگلیسی

In the current estimation of a GLM model, the correlation structure of regressors is not used as the basis on which to lean strong predictive dimensions. Looking for linear combinations of regressors that merely maximize the likelihood of the GLM has two major consequences: (1) collinearity of regressors is a factor of estimation instability, and (2) as predictive dimensions may lean on noise, both predictive and explanatory powers of the model are jeopardized. For a single dependent variable, attempts have been made to adapt PLS regression, which solves this problem in the classical Linear Model, to GLM estimation. In this paper, we first discuss the methods thus developed, and then propose a technique, Supervised Component Generalized Linear Regression (SCGLR), that combines PLS regression with GLM estimation in the multivariate context. SCGLR is tested on both simulated and real data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 119, August 2013, Pages 47–60
نویسندگان
, , , ,