کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1146145 | 957497 | 2010 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Concordance measures for multivariate non-continuous random vectors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A notion of multivariate concordance suitable for non-continuous random variables is defined and many of its properties are established. This allows the definition of multivariate, non-continuous versions of Kendall’s tau, Spearman’s rho and Spearman’s footrule, which are concordance measures. Since the maximum values of these association measures are not +1 in general, a special attention is given to the computation of upper bounds. The latter turn out to be multivariate generalizations of earlier findings made by Nešlehová (2007) [9] and Denuit and Lambert (2005) [2]. They are easy to compute and can be estimated from a data set of (possibly) discontinuous random vectors. Corrected versions are considered as well.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 101, Issue 10, November 2010, Pages 2398–2410
Journal: Journal of Multivariate Analysis - Volume 101, Issue 10, November 2010, Pages 2398–2410
نویسندگان
Mhamed Mesfioui, Jean-François Quessy,