کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1146306 957503 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Stein phenomenon for monotone incomplete multivariate normal data
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
The Stein phenomenon for monotone incomplete multivariate normal data
چکیده انگلیسی
We establish the Stein phenomenon in the context of two-step, monotone incomplete data drawn from Np+q(μ,Σ), a (p+q)-dimensional multivariate normal population with mean μ and covariance matrix Σ. On the basis of data consisting of n observations on all p+q characteristics and an additional N−n observations on the last q characteristics, where all observations are mutually independent, denote by μ̂ the maximum likelihood estimator of μ. We establish criteria which imply that shrinkage estimators of James-Stein type have lower risk than μ̂ under Euclidean quadratic loss. Further, we show that the corresponding positive-part estimators have lower risk than their unrestricted counterparts, thereby rendering the latter estimators inadmissible. We derive results for the case in which Σ is block-diagonal, the loss function is quadratic and non-spherical, and the shrinkage estimator is constructed by means of a nondecreasing, differentiable function of a quadratic form in μ̂. For the problem of shrinking μ̂ to a vector whose components have a common value constructed from the data, we derive improved shrinkage estimators and again determine conditions under which the positive-part analogs have lower risk than their unrestricted counterparts.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 101, Issue 3, March 2010, Pages 657-678
نویسندگان
, ,