کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1146306 | 957503 | 2010 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Stein phenomenon for monotone incomplete multivariate normal data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We establish the Stein phenomenon in the context of two-step, monotone incomplete data drawn from Np+q(μ,Σ), a (p+q)-dimensional multivariate normal population with mean μ and covariance matrix Σ. On the basis of data consisting of n observations on all p+q characteristics and an additional Nân observations on the last q characteristics, where all observations are mutually independent, denote by Î¼Ì the maximum likelihood estimator of μ. We establish criteria which imply that shrinkage estimators of James-Stein type have lower risk than Î¼Ì under Euclidean quadratic loss. Further, we show that the corresponding positive-part estimators have lower risk than their unrestricted counterparts, thereby rendering the latter estimators inadmissible. We derive results for the case in which Σ is block-diagonal, the loss function is quadratic and non-spherical, and the shrinkage estimator is constructed by means of a nondecreasing, differentiable function of a quadratic form in μÌ. For the problem of shrinking Î¼Ì to a vector whose components have a common value constructed from the data, we derive improved shrinkage estimators and again determine conditions under which the positive-part analogs have lower risk than their unrestricted counterparts.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 101, Issue 3, March 2010, Pages 657-678
Journal: Journal of Multivariate Analysis - Volume 101, Issue 3, March 2010, Pages 657-678
نویسندگان
Donald St. P. Richards, Tomoya Yamada,