کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1146439 | 1489690 | 2012 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Likelihood inference for Archimedean copulas in high dimensions under known margins
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز عددی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Explicit functional forms for the generator derivatives of well-known one-parameter Archimedean copulas are derived. These derivatives are essential for likelihood inference as they appear in the copula density, conditional distribution functions, and the Kendall distribution function. They are also required for several asymmetric extensions of Archimedean copulas such as Khoudraji-transformed Archimedean copulas. Availability of the generator derivatives in a form that permits fast and accurate computation makes maximum-likelihood estimation for Archimedean copulas feasible, even in large dimensions. It is shown, by large scale simulation of the performance of maximum likelihood estimators under known margins, that the root mean squared error actually decreases with both dimension and sample size at a similar rate. Confidence intervals for the parameter vector are derived under known margins. Moreover, extensions to multi-parameter Archimedean families are given. All presented methods are implemented in the R package nacopula and can thus be studied in detail.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 110, September 2012, Pages 133-150
Journal: Journal of Multivariate Analysis - Volume 110, September 2012, Pages 133-150
نویسندگان
Marius Hofert, Martin Mächler, Alexander J. McNeil,