کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147102 957550 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dealing with label switching in mixture models under genuine multimodality
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Dealing with label switching in mixture models under genuine multimodality
چکیده انگلیسی

The fitting of finite mixture models is an ill-defined estimation problem, as completely different parameterizations can induce similar mixture distributions. This leads to multiple modes in the likelihood, which is a problem for frequentist maximum likelihood estimation, and complicates statistical inference of Markov chain Monte Carlo draws in Bayesian estimation. For the analysis of the posterior density of these draws, a suitable separation into different modes is desirable. In addition, a unique labelling of the component specific estimates is necessary to solve the label switching problem. This paper presents and compares two approaches to achieve these goals: relabelling under multimodality and constrained clustering. The algorithmic details are discussed, and their application is demonstrated on artificial and real-world data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 100, Issue 5, May 2009, Pages 851–861
نویسندگان
, ,