کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147752 957793 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Low-pass filter design using locally weighted polynomial regression and discrete prolate spheroidal sequences
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Low-pass filter design using locally weighted polynomial regression and discrete prolate spheroidal sequences
چکیده انگلیسی

The paper concerns the design of nonparametric low-pass filters that have the property of reproducing a polynomial of a given degree. Two approaches are considered. The first is locally weighted polynomial regression (LWPR), which leads to linear filters depending on three parameters: the bandwidth, the order of the fitting polynomial, and the kernel. We find a remarkable linear (hyperbolic) relationship between the cut-off period (frequency) and the bandwidth, conditional on the choices of the order and the kernel, upon which we build the design of a low-pass filter.The second hinges on a generalization of the maximum concentration approach, leading to filters related to discrete prolate spheroidal sequences (DPSS). In particular, we propose a new class of low-pass filters that maximize the concentration over a specified frequency range, subject to polynomial reproducing constraints. The design of generalized DPSS filters depends on three parameters: the bandwidth, the polynomial order, and the concentration frequency. We discuss the properties of the corresponding filters in relation to the LWPR filters, and illustrate their use for the design of low-pass filters by investigating how the three parameters are related to the cut-off frequency.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 2, February 2011, Pages 831–845
نویسندگان
, ,