کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147859 957802 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SVM-like decision theoretical classification of high-dimensional vectors
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
SVM-like decision theoretical classification of high-dimensional vectors
چکیده انگلیسی
In this paper, we consider the classification of high-dimensional vectors based on a small number of training samples from each class. The proposed method follows the Bayesian paradigm, and it is based on a small vector which can be viewed as the regression of the new observation on the space spanned by the training samples. The classification method provides posterior probabilities that the new vector belongs to each of the classes, hence it adapts naturally to any number of classes. Furthermore, we show a direct similarity between the proposed method and the multicategory linear support vector machine introduced in Lee et al. [2004. Multicategory support vector machines: theory and applications to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association 99 (465), 67-81]. We compare the performance of the technique proposed in this paper with the SVM classifier using real-life military and microarray datasets. The study shows that the misclassification errors of both methods are very similar, and that the posterior probabilities assigned to each class are fairly accurate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 140, Issue 3, March 2010, Pages 705-718
نویسندگان
, ,