کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1148640 | 957844 | 2007 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stochastic volatility modelling in continuous time with general marginal distributions: Inference, prediction and model selection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We compare results for stochastic volatility models where the underlying volatility process having generalized inverse Gaussian (GIG) and tempered stable marginal laws. We use a continuous time stochastic volatility model where the volatility follows an Ornstein–Uhlenbeck stochastic differential equation driven by a Lévy process. A model for long-range dependence is also considered, its merit and practical relevance discussed. We find that the full GIG and a special case, the inverse gamma, marginal distributions accurately fit real data. Inference is carried out in a Bayesian framework, with computation using Markov chain Monte Carlo (MCMC). We develop an MCMC algorithm that can be used for a general marginal model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 137, Issue 10, 1 October 2007, Pages 3068–3081
Journal: Journal of Statistical Planning and Inference - Volume 137, Issue 10, 1 October 2007, Pages 3068–3081
نویسندگان
Matthew P.S. Gander, David A. Stephens,