کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1148709 957848 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Posterior consistency of logistic Gaussian process priors in density estimation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Posterior consistency of logistic Gaussian process priors in density estimation
چکیده انگلیسی

We establish weak and strong posterior consistency of Gaussian process priors studied by Lenk [1988. The logistic normal distribution for Bayesian, nonparametric, predictive densities. J. Amer. Statist. Assoc. 83 (402), 509–516] for density estimation. Weak consistency is related to the support of a Gaussian process in the sup-norm topology which is explicitly identified for many covariance kernels. In fact we show that this support is the space of all continuous functions when the usual covariance kernels are chosen and an appropriate prior is used on the smoothing parameters of the covariance kernel. We then show that a large class of Gaussian process priors achieve weak as well as strong posterior consistency (under some regularity conditions) at true densities that are either continuous or piecewise continuous.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 137, Issue 1, 1 January 2007, Pages 34–42
نویسندگان
, ,