کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1149607 957888 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence rates of generalization errors for margin-based classification
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Convergence rates of generalization errors for margin-based classification
چکیده انگلیسی

This paper develops a general approach to quantifying the size of generalization errors for margin-based classification. A trade-off between geometric margins and training errors is exhibited along with the complexity of a binary classification problem. Consequently, this results in dealing with learning theory in a broader framework, in particular, of handling both convex and non-convex margin classifiers, among which includes, support vector machines, kernel logistic regression, and ψψ-learning. Examples for both linear and nonlinear classifications are provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 139, Issue 8, 1 August 2009, Pages 2543–2551
نویسندگان
,