کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1149610 | 957888 | 2009 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust centroid based classification with minimum error rates for high dimension, low sample size data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A new method of statistical classification (discrimination) is proposed. The method is most effective for high dimension, low sample size data. It uses a robust mean difference as the direction vector and locates the classification boundary by minimizing the error rates. Asymptotic results for assessment and comparison to several popular methods are obtained by using a type of asymptotics of finite sample size and infinite dimensions. The value of the proposed approach is demonstrated by simulations. Real data examples are used to illustrate the performance of different classification methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 139, Issue 8, 1 August 2009, Pages 2571–2580
Journal: Journal of Statistical Planning and Inference - Volume 139, Issue 8, 1 August 2009, Pages 2571–2580
نویسندگان
Jiancheng Jiang, J.S. Marron, Xuejun Jiang,